Selection on synonymous sites for increased accessibility around miRNA binding sites in plants.
نویسندگان
چکیده
Synonymous codons are widely selected for various biological mechanisms in both prokaryotes and eukaryotes. Recent evidence suggests that microRNA (miRNA) function may affect synonymous codon choices near miRNA target sites. To better understand this, we perform genome-wide analysis on synonymous codon usage around miRNA target sites in four plant genomes. We observed a general trend of increased site accessibility around miRNA target sites in plants. Guanine-cytosine (GC)-poor codons are preferred in the flank region of miRNA target sites. Within-genome analyses show significant variation among miRNA targets in species. GC content of the target gene can partly explain the variation of site accessibility among miRNA targets. miRNA targets in GC-rich genes show stronger selection signals than those in GC-poor genes. Gene's codon usage bias and the conservation level of miRNA and its target also have some effects on site accessibility, but the expression level of miRNA or its target and the mechanism of miRNA activity do not contribute to site accessibility differences among miRNA targets. We suggest that synonymous codons near miRNA targets are selected for efficient miRNA binding and proper miRNA function. Our results present a new dimension of natural selection on synonymous codons near miRNA target sites in plants, which will have important implications of coding sequence evolution.
منابع مشابه
Sequence variation of MicroRNAs and their binding sites in Arabidopsis.
Major differences exist between plants and animals both in the extent of microRNA (miRNA)-based gene regulation and the sequence complementarity requirements for miRNA-messenger RNA pairing. Whether these differences affect how these sites evolve at the molecular level is unknown. To determine the extent of sequence variation at miRNAs and their targets in a plant species, we resequenced 16 miR...
متن کاملComputational Assessment of the Cooperativity between RNA Binding Proteins and MicroRNAs in Transcript Decay
Transcript degradation is a widespread and important mechanism for regulating protein abundance. Two major regulators of transcript degradation are RNA Binding Proteins (RBPs) and microRNAs (miRNAs). We computationally explored whether RBPs and miRNAs cooperate to promote transcript decay. We defined five RBP motifs based on the evolutionary conservation of their recognition sites in 3'UTRs as ...
متن کاملA structural-based statistical approach suggests a cooperative activity of PUM1 and miR-410 in human 3'-untranslated regions
BACKGROUND Micro (mi)RNAs comprise a large family of small non-coding RNAs that are thought to regulate a large fraction of protein-coding genes. Generally, miRNAs downregulate messenger (m)RNA expression by binding to the 3' untranslated regions (UTRs) of the RNA molecules. An important factor for binding specificity is the matching in the seed region. In addition, target site accessibility is...
متن کاملPreliminary Site Selection of Pumped Storage Hydropower Plants - A GIS-based approach
The first stage in development and design of Pumped Storage Hydropower Plants (PSHP) is finding the optimum location. This paper presents a methodology for preliminary site selection of PSHP with the help of geospatial data analysis in a Geographic Information System (GIS) environment. The conventional method of PSHP site selection has certain limitations and is not cost and time effective. The...
متن کاملBiological Basis of miRNA Action when Their Targets Are Located in Human Protein Coding Region
Recent analyses have revealed many functional microRNA (miRNA) targets in mammalian protein coding regions. But, the mechanisms that ensure miRNA function when their target sites are located in protein coding regions of mammalian mRNA transcripts are largely unknown. In this paper, we investigate some potential biological factors, such as target site accessibility and local translation efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2012